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GAS-DYNAMIC ANALOGY FOR

VORTEX FREE-BOUNDARY FLOWS

UDC 532.592; 517.958V. M. Teshukov

The classical shallow-water equations describing the propagation of long waves in flow without a
shear of the horizontal velocity along the vertical coincide with the equations describing the isentropic
motion of a polytropic gas for a polytropic exponent γ = 2 (in the theory of fluid wave motion, this
fact is called the gas-dynamic analogy). A new mathematical model of long-wave theory is derived
that describes shear free-boundary fluid flows. It is shown that in the case of one-dimensional motion,
the equations of the new model coincide with the equations describing nonisentropic gas motion with
a special choice of the equation of state, and in the multidimensional case, the new system of long-
wave equations differs significantly from the gas motion model. In the general case, it is established
that the system of equations derived is a hyperbolic system. The velocities of propagation of wave
perturbations are found.

Key words: long-wave approximation, shear flow, free boundary, shallow water, gas-dynamic
analogy.

1. Averaging of the Long-Wave Equations. The motion of an ideal incompressible free-boundary fluid
is described by Euler’s equations

ρ
du

dt
+ ∇2p = 0, ρ

du3

dt
+ px3 = −ρg, div2 u + u3x3 = 0, (1.1)

where
d

dt
=

∂

∂t
+ u · ∇2 + u3

∂

∂x3
.

The free boundary x3 = h(t, x1, x2) is subjected to the kinematic and dynamic boundary conditions

ht + (u2 · ∇2)h = u3, p = p0 = const, (1.2)

and the even bottom x3 = 0 to the nonpenetration condition

u3 = 0. (1.3)

In (1.1)–(1.3), t is time, x = (x1, x2) is the radius-vector in the horizontal plane, x3 is the vertical coordinate,
u = (u1, u2) is the horizontal velocity, u3 is the vertical fluid-velocity component, ρ is the density, h(t, x1, x2) is the
depth, p is the pressure, g is the acceleration of gravity, and ∇2 and div2 are the gradient and divergence calculated
with respect to the vector variable x = (x1, x2).

We introduce the dimensionless variables

x′ =
x

L
, x′

3 =
x3

H
, t′ =

Ut

L
, u′ =

u

U
,

u′
3 =

Lu3

UH
, h′ =

h

H
, p′ =

p

RU2
, ρ′ =

ρ

R
.
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In these variables, the Euler equation (1.1) are written as

ρ
du

dt
+ ∇2p = 0, ε2ρ

du3

dt
+ px3 = −ρ Fr−2, div2 u + u3x3 = 0 (1.4)

(the primes in the notation of the new dimensionless variables are omitted; Fr = U/
√

gH is the Froude number and
ε = H/L). Eliminating the pressure p from system (1.4), we obtain the Helmholtz equation which describes the
evolution of the dimensionless vortex ω = (ω1, ω2, ω3) = (ε2u3x2 − u2x3, u1x3 − ε2u3x1 , u2x1 − u1x2):

ωt + (u · ∇2)ω + u3ωx3 = (ε2u3x2 − u2x3)Ux1 + (u1x3 − ε2u3x1)Ux2 + (u2x1 − u1x2)Ux3 (1.5)

[U = (u1, u2, u3)]. Projecting the Helmholtz equation (1.5) onto the x1 and x2 axes, we obtain the equations with
a small right-hand side of order O(ε2):

(u1x3)t + (u · ∇2)u1x3 + u3(u1x3)x3 + u1x2u2x3 − u2x2u1x3 = O(ε2),

(u2x3)t + (u · ∇2)u2x3 + u3(u2x3)x3 + u2x1u1x3 − u1x1u2x3 = O(ε2).
(1.6)

In the derivation of the long-wave model, the terms of order O(ε2) in Eqs. (1.6) can be ignored. Then, the equation
for the vertical momentum component reduces to the hydrostatic law of pressure distribution with depth:

px3 = −ρ Fr−2, p − p0 = ρ Fr−2(h − x3).

Using this representation, we obtain the following approximate equations of the model of long waves propagating
in shear flow:

du

dt
+ Fr−2 ∇2h = 0, div2 u + u3x3 = 0, ht + (uh · ∇3)h = uh

3 . (1.7)

Here uh and uh
3 are the velocity components on the free boundary x3 = h(t, x1, x2). At the bottom x3 = 0, the

solution of system (1.7) should satisfy condition (1.3).
Solutions of system (1.4) that satisfy the condition S = (u1x3)2 + (u2x3)2 �= 0 will be called flows with a

vertical velocity shear or shear flows. Accordingly, in a shearless flow, u1x3 = u2x3 = 0. Model (1.7) reduces to a
system of integrodifferential equations to which the theory of generalized characteristics is applicable (see [1, 2]),
which allows one to study the general properties of long waves propagating in shear flow. Below, simpler models will
be derived in which the shear nature of the flow is taken into account by introducing some average characteristics
of the velocity shear along the vertical.

In the class of flows with a fairly small quantity S, the classical shallow-water equations can be derived by
averaging Eqs. (1.7) over the depth. Integrating (1.7) over x3 from 0 to h and taking into account the boundary
conditions, we obtain

( h∫

0

u dx3

)
t
+ div

( h∫

0

(u ⊗ u) dx3

)
+

Fr−2

2
∇2(h2) = 0, (1.8)

ht + div
( h∫

0

u dx3

)
= 0,

where (a ⊗ b) is a dyad of the vectors a and b. Introducing the horizontal velocity averaged over the depth

ū = h−1

h∫

0

u dx3,

we replace the integral of the vector u over the depth in Eqs. (1.8) by the expression hū. However, the integrals of
the expressions quadratic in velocity in Eqs. (1.8) are not expressed in terms of the averaged velocity in the general
shear flow. In hydraulics, these integrals are approximated by empirical formulas of the form [3]

h∫

0

(u ⊗ u) dx3 = αh(ū ⊗ ū),
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where α is an empirical correction factor. We note that the use of this relation leads to a loss of invariance of the
resulting system of equations with respect to the Galilean transformation, notwithstanding the fact that system
(1.8) admits this transformation.

In [4], system (1.8) for the one-dimensional case was closed by a different empirical relation:

∂

∂x1

h∫

0

(u − ū)2 dx3 = gH
∂h

∂x1

(H is a certain constant). However, a justification of this relation was not given.
A model which on the average approximately accounts for the shear nature of the flow is obtained below

without invoking empirical formulas. Using the obvious identity u = ū + (u− ū), we calculate the tensor u⊗u in
the form

u ⊗ u = ū ⊗ ū + ū ⊗ (u − ū) + (u − ū) ⊗ ū + (u − ū) ⊗ (u − ū).

In the integration of this expression from 0 to h, the terms linear in (u − ū) make zero contribution. As a result,
we obtain the representation

h∫

0

(u ⊗ u) dx3 = h(ū ⊗ ū) + P,

where

P =

h∫

0

(u − ū) ⊗ (u − ū) dx3.

Using the tensor P , we write Eqs. (1.8) as

ht + div2(hū) = 0,

(hū)t + div2(h(ū ⊗ ū) + P ) + (1/2) Fr−2 ∇2(h2) = 0.
(1.9)

The above system of equations is not closed because, along with h, ū, it contains the unknown components of the
tensor P :

Pij =

h∫

0

(ui − ūi)(uj − ūj) dx3.

We note that Eqs. (1.8) have particular solutions of the form

u1 = ωy + u0(t, x), u2 = 0, h = h(t, x) (ω = const).

Calculating the component P11 on this solution, we obtain

P11 = ω2h3/12. (1.10)

Generally, the components Pij are not expressed in terms of the other sought functions. We obtain the equations
governing the evolution of these components. Averaging Eqs. (1.8) over the depth

d

dt
(uiuj) + Fr−2(hxiuj + hxj ui) = 0,

we have

∂

∂t
(hūiūj + Pij) +

2∑
k=1

∂

∂xk
(hūiūj ūk + ūkPij + ūiPjk + ūjPik + Pijk) Fr−2 h(ūjhxi + ūihxj ) = 0.
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Here

Pijk =

h∫

0

(ui − ūi)(uj − ūj)(uk − ūk) dx3

are the components of the new unknown third-rank tensor which are expressed in terms of the third moments of
the differences of the true and averaged velocities (u − ū) (analogs of the pulsation velocities in turbulent flow
theory). Complementary equations describing the evolution of Pijk are required to close the system of equations
obtained. Calculations similar to those performed above show that these complementary equations contain integrals
that depend on the fourth-order moments of the pulsation velocities. Continuing this process infinitely, we obtain a
system with an infinite number of equations and unknown functions. This situation is characteristic of the cases of
averaging of nonlinear equations (a similar situation arises in constructing the closed system of the equations for the
moments of pulsation velocities in turbulence theory). Thus, in the general shear flow, the averaged equations are
not closed in a finite number of steps. The description of motion in terms of average quantities reduces to solving
an infinite system of differential equations. Below, it is shown that in the class of flows with weak shear, closure
can be implemented within the framework of approximate theory.

From Eqs. (1.6), it follows that if at t = 0

u1x3 = O(εα), u2x3 = O(εα),

then for all t > 0,

u1x3 = O(εβ), u2x3 = O(εβ)

[β = min (2, α)].
If β ≥ 1, then |S| � ε2 and the motion of a free-boundary fluid can be described by the classical shallow-water

equations

ht + div2(hū) = 0,

(hū)t + div2(h(ū ⊗ ū)) + (1/2) Fr−2 ∇2(h2) = 0.

Indeed, in Eqs. (1.8), the tensor P , which has the order of smallness ε2β can be omitted (taking into account that
ε2β � ε2) because

|u − ū| = O(εβ), |Pij | = O(ε2β), |Pijk| = O(ε3β).

In this case, the error is smaller than a quantity of order O(ε2).
We note that the classical system of shallow-water equations coincides, to within the renotation of the

required functions, with the equations describing the isentropic motion of a polytropic gas for γ = 2. In this case,
the equation of state for the “gas” is written as follows [5, 6]:

p(h) = Fr−2 h2/2.

If β < 1, then |Pij | = O(ε2β) � O(ε2) and, notwithstanding that the terms Pij are small for small ε, their
value far exceeds the error of the derivation of the long-wave approximation model (1.8). Hence, in the construction
of the approximate theory taking into account the small quantities O(ε2β) � O(ε2), the terms Pij should also be
taken into account. In this case, the terms Pijk of order O(ε3β) can be omitted since ε3β � ε2β for β < 1.

Below, we assume that the solution of Eqs. (1.6) describes motion with a weak shear if

u1x3 = O(εβ), u2x3 = O(εβ)

for β < 1.
In the class of weak shear flows, we can close system (1.8), (1.9) by omitting the third-order moments in

Eqs. (1.9). As a result, we have the following equations for h, ū, and Pij :

ht + div2(hū) = 0,

(hū)t + div2(h(ū ⊗ ū) + P ) + (1/2) Fr−2 ∇2(h2) = 0;
(1.11)
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(Pij)t + div(Pij ū) +
2∑

k=1

(
Pjk

∂ūi

∂xk
+ Pik

∂ūj

∂xk

)
= 0. (1.12)

Thus, we obtained a new mathematical model which on the average accounts for the effect of the weak shear
of the horizontal velocity along the vertical and generalizes the classical shallow-water model.

Instead of the variables Pij , we introduce the variables Qij related to them by the formula

Pij = h3Qij/12

written by analogy with (1.10). In the new variables, Eqs. (1.11) and (1.12) have the form

ht + div2(hū) = 0,

dū1

dt
+

h2

12
∂Q11

∂x1
+

h2

12
∂Q12

∂x2
+

(hQ11

4
+ Fr−2

) ∂h

∂x1
+

hQ12

4
∂h

∂x2
= 0,

dū2

dt
+

h2

12
∂Q12

∂x1
+

h2

12
∂Q22

∂x2
+

hQ12

4
∂h

∂x1
+

(hQ22

4
+ Fr−2

) ∂h

∂x2
= 0,

dQ11

dt
+ 2Q12

∂ū1

∂x2
− 2Q11

∂ū2

∂x2
= 0, (1.13)

dQ12

dt
− Q12 div2(ū) + Q11

∂ū2

∂x1
+ Q22

∂ū1

∂x2
= 0,

dQ22

dt
+ 2Q12

∂ū2

∂x1
− 2Q22

∂ū1

∂x1
= 0.

From the definition of the quantities Pij and the Cauchy inequalities, it follows that

P11P22 ≥ P 2
12.

We note that the components Qij are related by the similar inequality

Q11Q22 ≥ Q2
12. (1.14)

From system (1.13), for the quantity J = Q11Q22 − Q2
12 we obtain the equation

dJ

dt
− 2J div2 u = 0,

which implies that if J = 0 (or J ≥ 0) at t = 0, then J = 0 (J ≥ 0) for all values of t. We also note that at t = 0,
J vanishes if the initial values of the horizontal velocity components depend linearly on the vertical variable x3, i.e.,
if the equalities u1x3x3=0 and u2x3x3=0 are satisfied at t = 0.

2. Hyperbolicity of the Long-Wave Equations. To find the characteristics of system (1.13), we write
it in vector form

Ut + AUx1 + BUx2 = 0,

where U = (h, u1, u2, Q11, Q12, Q22) and A and B are 6 × 6 matrices. Let ξ = (τ, ξ, η) be the normal vector to the
characteristics. Then, the characteristic matrix A(ξ) = τI + ξA + ηB of system (1.13) has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ ξh ηh 0 0 0

ξ
(hQ11

4
+ Fr−2

)
+

ηhQ12

4
χ 0

ξh2

12
ηh2

12
0

ξhQ12

4
+ η

(hQ22

4
+ Fr−2

)
0 χ 0

ξh2

12
ηh2

12
0 2ηQ12 −2ηQ11 χ 0 0
0 ηQ22 − ξQ12 −ηQ12 + ξQ11 0 χ 0
0 −2ξQ22 2ξQ12 0 0 χ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Here and below, u1 and u2 denote the averaged fluid velocity components (the bar in the notation is omitted);
χ = τ + u1ξ + u2η.

A simple but bulky calculation yields the following expression for det A(ξ):

detA(ξ) = χ2(χ2 − (h2/12)(Q11ξ
2 + 2Q12ξη + Q22η

2))

× (χ2 − (h2/4)(Q11ξ
2 + 2Q12ξη + Q22η

2) − Fr−2 h(ξ2 + η2)). (2.1)

We specify the characteristic surface by the equation H(t, x1, x2) = 0. Then, to obtain the differential equations
of the characteristics, we need to replace the vector (τ, ξ, η) in (2.1) by the vector (Ht, Hx1 , Hx2) and equate
detA(Ht, Hx1 , Hx2) to zero. As a result, we obtain a set of contact characteristics (the corresponding characteristic
root has multiplicity two)

Ht + u1Hx1 + u2Hx2 = 0 (2.2)

and four additional characteristic families

Ht + u1Hx1 + u2Hx2 = ±
√

(h2/12)(Q11H2
x1

+ 2Q12Hx1Hx2 + Q22H2
x2

) ,

Ht + u1Hx1 + u2Hx2 = ±
√

(h/ Fr2)(H2
x1

+ H2
x2

) + (h2/4)(Q11H2
x1

+ 2Q12Hx1Hx2 + Q22H2
x2

) .

The nonnegativeness of the quadratic form

Q11H
2
x1

+ 2Q12Hx1Hx2 + Q22H
2
x2

is provided by inequality (1.14). Hence, if inequality (1.14) is satisfied, system (1.13) is hyperbolic. We note
that if the terms containing Qij in the previous formulas are ignored, the formulas will contain only the contact
characteristics (2.2) and analogs of the sonic characteristics of gas dynamics:

Ht + u1Hx1 + u2Hx2 = ±(
√

h/ Fr)
√

H2
x1

+ H2
x2

.

3. One-Dimensional Motion. In the case of one-dimensional motion, Eqs. (1.8) and (1.9) are written as

ht + (hu)x = 0, (hu)t + (hu2)x + (Fr−2 h2/2 + P )x = 0, Pt + uPx + 3Pux = 0. (3.1)

Performing the substitution of the sought function

P = ω2h3/12

(the quantity ω has the meaning of the average vorticity), we transform the last equation of system (3.1) to the
form

(ω2)t + u(ω2)x = 0.

From this equation, it follows that ω2 is conserved along the particle trajectories, as is the case for entropy in gas
dynamics. System (3.1) implies the energy conservation law

∂

∂t

(hu2

2
+

ω2h3

24
+

Fr−2 h2

2

)
+

(hu3

2
+

1
8

ω2h3u + Fr−2 h2u
)

x
= 0.

We define the internal energy of the “gas” e and the pressure p̃ by the formulae

e = ω2h2/24 + Fr−2 h/2, p̃ = Fr−2 h/2 + ω2h3/12.

We calculate

de + p̃ d
( 1

h

)
=

h2

24
dω.

Determining the temperature of the “gas” T = ω2h2/24 and integrating the basic thermodynamic identity

ds =
1
T

(
de + p̃ d

( 1
h

))
=

dω2

ω2
,

we find the entropy of the “gas”:

s = ln (ω2). (3.2)
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Thus, in the one-dimensional case, system (1.13) reduces to the equations of nonisentropic gas dynamics:

ht + (hu)x = 0, (hu)t + (hu2)x + p̃x = 0,

(h(u2/2 + e))t + (hu(u2/2 + e + p̃/h))x = 0.
(3.3)

The equations of state for the “gas” are written as

p̃(h, s) = Fr−2 h2/2 + esh3/12, e(h, s) = Fr−2 h/2 + esh2/24,

where h plays the role of the density of the “gas” and the entropy s is related to the average vorticity by Eq. (3.2).
We note that fluid flows with constant average vorticity (ω = const) correspond to isentropic gas flows, and

the classical shallow-water equations are derived by passing to the limit s → −∞ in system (3.3).
The extension of the gas-dynamic analogy to vortical fluid flows presented here allows the well-known classes

of solutions of the equations of one-dimensional nonisentropic gas dynamics to be used for an approximate description
of free-boundary fluid flows. The obtained model of three-dimensional vortex free-boundary flows requires further
investigation.

This work was supported by the Russian Foundation for Basic Research (Grant No. 04-01-00253).
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